A Comparative Study of Local Descriptors for Object Category Recognition: SIFT vs HMAX

نویسندگان

  • Plinio Moreno
  • Manuel J. Marín-Jiménez
  • Alexandre Bernardino
  • José Santos-Victor
  • Nicolas Pérez de la Blanca
چکیده

In this paper we evaluate the performance of the two most successful state-of-the-art descriptors, applied to the task of visual object detection and localization in images. In the first experiment we use these descriptors, combined with binary classifiers, to test the presence/absence of object in a target image. In the second experiment, we try to locate faces in images, by using a structural model. The results show that HMAX performs slightly better than SIFT in these tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative study of global invariant descriptors for object recognition

Even if lots of object invariant descriptors have been proposed in the literature, putting them into practice in order to obtain a robust recognition system face to several perturbations is still a studied problem. After presenting the most commonly used global invariant descriptors, a comparative study permits to show their ability to discriminate between objects with few training. The COIL-10...

متن کامل

Performance Evaluation of SIFT - Based Descriptors for Object Recognition

Object recognition has become one of the most active research topics in computer vision in recent years. The set of features extracted from the training image is critical for good object recognition performance. The Scale Invariant Feature Transform (SIFT) was proposed by David Lowe in 1999; the SIFT features are local and effective for object recognition. In this paper we conducted a survey of...

متن کامل

New Robust Descriptor for Image Matching

Nowadays, object recognition based on feature extraction is widely used in image matching due to its robustness to different types of image transformations. This paper introduces a new approach for extracting invariant features from interest regions. This approach is inspired from the well known Scale Invariant Feature Transform (SIFT) interest points detector and aims to improve the computatio...

متن کامل

Using Gradient Features from Scale-invariant Keypoints on Face Recognition

As the individual identification, access control and security appliance issues attract much attention, face recognition applications are more and more popular. The challenge of face recognition is that the performance is mainly constrained by the variations of illumination, expression, pose and accessory. And most algorithms which were proposed in recent years focused on how to conquest these c...

متن کامل

Research Progress of the Scale Invariant Feature Transform (SIFT) Descriptors

The SIFT (Scale Invariant Feature Transform) is a computer vision algorithm that is used to detect and describe the local image features. The SIFT features are robust to changes in illumination, noise, and minor changes in viewpoint. The SIFT features have been used object recognition, image retrieval and matching, and so on.. The research of SIFT descriptors and improved SIFT descriptors is im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007